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This is a note about relates to the N-Bakry-Émery Ricci curvature and
the punctured torus. Specifically, we attempt to answer the question,
“Can a punctured torus admit metrics which satisfy nonnegative ∞-
Bakry-Émery Ricci curvature?"

What am I talking about?

The main question that I try to answer in this note is the following:

Question 0.1. Can a punctured torus admit metrics which satisfy Ric∞
φ ≥

0?

I will give a partial answer to this question later in this note.

I think of the N-Bakry-Émery Ricci curvature is a generalization of
Ricci curvature in some sense (we’ll get to this later). I see manifolds
with non-negative N-Bakry-Émery Ricci curvature (RicN

X ≥ 0) as
comparable to nonnegative Ricci curvature (Ric ≥ 0) in the sense that
it’s expected when manifolds fit in both categories and it’s interesting
when they fit into the former category but not the latter. Ric ≥ 0 RicN

X ≥ 0

The proposition given later in this note tells us that the punctured
torus with non-negative ∞-Bakry-Émery Ricci curvature cannot have
a warped product splitting given some conditions. Why did I choose
the punctured torus? How is the warped product splitting related?
Where do these conditions come from? We will get into this later in
the note. But first, we give some much needed definitions.

What definitions do we need?

The most important definition is the N-Bakry-Émery Ricci curvature.
We define the N-Bakry-Émery Ricci tensors as follows:

Definition 0.2. Let X be a vector field on (Mn, g), a Riemannian manifold.
The N-Bakry-Émery tensor is

RicN
X := Ric+

1
2
LX g− 1

N − n
X∗ ⊗ X∗

where LX g is the Lie derivative of g with respect to X, defined as follows:

LX g : Tp M× Tp M→ R

(Y, Z) 7→ 〈∇Y X, Z〉+ 〈∇Z X, Y〉
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and

X∗ : Tp M→ R

Y 7→ g(X, Y).

If X = ∇φ where φ : M → R is a smooth function, the N-Bakry-Émery
Ricci tensor is

RicN
φ := Ric+Hess φ− 1

N − n
dφ⊗ dφ.

If X = ∇φ and N = ∞, then we denote

Ricφ := Ric∞
φ = Ric+Hess φ. (1)

Remark 0.3. Note that RicN
X is a generalization of RicN

φ because if X =

∇ φ, then RicN
X = RicN

φ . Similarly, we call RicN
φ a generalization of Ric

because if φ is constant, then RicN
φ = Ric. 1 1

RicN
XyX = ∇φ

RicN
φyφ=constant

Ric

Our next vocabulary term is the notion of a loop being homotopic
to another loop.

Definition 0.4. Given a ray γ and a loop C : [0, L] → M based at γ(0),
we say that a loop C̃ : [0, L] → M is homotopic to C along γ if there exists
r > 0 with C̃(0) = C̃(L) = γ(r) and the loop, constructed by joining γ

from 0 to r with C from 0 to L and then with γ from r to 0 is homotopic to
C, in π1(M, γ(0)).

Figure 1: In the figure on the left, the
two black loops are homotopic to each
other. In the figure on the right, the
black loop is not homotopic to the gray
loop.Next, we define the purely topological property (as opposed to

having some geometric-ness to it), the geodesic loops to infinity
property.

Definition 0.5. An element h ∈ π1(M, γ(0)) has the geodesic loops to
infinity property along γ if for any A ⊂ M compact, there exists a loop
C̃ ⊂ M \ A which is homotopic to a representative loop, C of h along γ.

Figure 2: In the figure above, we have
a punctured torus, which does not
have the geodesic loops to infinity
property. The geodesic loop in black on
the left gets “stuck" and cannot reach
the geodesic loop in black on the right.
In the figure below, we have a cylinder,
which does have the geodesic loops to
infinity property. We see that the black
loop is able to homotope to any of the
gray loops.
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Our last vocabulary term is the warped product splitting.

Definition 0.6. (M, g) has a warped product splitting if M is diffeomor-
phic to R× L where L is an (n− 1)-dimensional manifold and there exists
u : R→ R+ such that g = dr2 + u2(r)g0 for a fixed metric g0. We call g a
warped product over R and we call u(r) the warping function.

Figure 3: The figure on the left depicts
a function, u(r) as in Definition 0.6. The
figure on the right depicts a manifold
which has a warped product splitting
with warping function u(r).Intuition

The following is Theorem 1.9 from my paper2. 2 Alice Lim. The splitting theorem
and topology of noncompact spaces
with nonnegative N-Bakry Émery
Ricci curvature. To appear in the
Proceedings of the AMS, 2020. doi:
https://doi.org/10.1090/proc/15240

Theorem 0.7. Let Mn be complete and noncompact.

1. If RicN
X > 0 for N > n, then Hn−1(M, Z) = 0.

2. If RicN
φ > 0 for N ≤ 1 with φ < K for some K ∈ R, then Hn−1(M, Z) =

0.

3. If Ric∞
φ > 0 with ∇φ→ 0 at ∞, then Hn−1(M, Z) = 0.

This is an interesting question because we know that Ric∞
φ ≥ A >

0 cannot occur by 3. We also know by Theorem 0.7(3) that φ must 3 William Wylie. A warped product ver-
sion of the Cheeger-Gromoll splitting
theorem. Transactions of the American
Mathematical Society, 369(9):6661—-6681,
2017

be unbounded. Note in Section 2, we assumed bounds on φ, so the
topological implications of the Splitting Theorem don’t hold for the
punctured torus. My conjecture is that there do not exist metrics
which satisfy Ric∞

φ ≥ 0 on the punctured torus.

It is natural to think that if the punctured torus did admit a metric
which satisfies Ric∞

φ ≥ 0 that the metric would be a warped product
near ∞. I have made progress in proving that the punctured torus
cannot satisfy Ric∞

φ ≥ 0 if the metric has a warped product splitting
near infinity by using theorems in 4. I hope to develop these ideas 4 Alice Lim. The splitting theorem

and topology of noncompact spaces
with nonnegative N-Bakry Émery
Ricci curvature. To appear in the
Proceedings of the AMS, 2020. doi:
https://doi.org/10.1090/proc/15240

to find a class of manifolds which do not admit Ric∞
φ ≥ 0. In fact, it

is an open question whether there exist non-compact topologically
finite surfaces with complete metrics which admit Ric∞

φ ≥ 0.

Theorem and Proof.

In this section, we provide our theorem and proof.

Theorem 0.8. Let M be a punctured torus. Let Ric∞
φ ≥ 0 and let there

exist a point p ∈ M where (Ric∞
φ )p > 0. Then M cannot have a warped

product splitting, g = dr2 + ρ2(r)dθ2 near infinity if lim
i→∞
|ρ′(ri)| exists

where lim
i→∞

φ((ri, θi)) = ∞.
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Proof.
Let g = dr2 + ρ2(r)dθ2 near infinity as in Figure 4. Let ρ′(0) < 0

and ρ(0) > 0. Then Ric∞
φ ( ∂

∂θ , ∂
∂θ ) = −ρρ′′ + φ′ρ′ρ on the punctured

part of the punctured torus.

Figure 4: Punctured Torus

Since the punctured torus doesn’t have the loops to infinity prop-
erty, by Theorem 1.95, there exists a sequence of points {pi} ∈ M

5 Alice Lim. The splitting theorem
and topology of noncompact spaces
with nonnegative N-Bakry Émery
Ricci curvature. To appear in the
Proceedings of the AMS, 2020. doi:
https://doi.org/10.1090/proc/15240

such that lim
i→∞

φ(pi) = ∞. Here, pi = (ri, θi) where lim
i→∞

ri = ∞.

Figure 5: Exists ri → ∞ such that
φ(pi)→ ∞

Since Ric∞
φ ( ∂

∂θ , ∂
∂θ ) = −ρeφ(ρ′e−φ)′, Ric∞

φ is nonnegative if and only
if ρ′e−φ is decreasing everywhere.

We aim to show that ρ′(r) must be non-positive for all r > 0.
Since ρ′e−φ is decreasing everywhere, for all x < y, we must have
ρ′(x)e−φ(x) > ρ′(y)e−φ(y). We have that ρ′(0)e−φ(0) is negative. Sup-
pose there exists a point z such that ρ′(z) is positive. Then ρ′(z)e−φ(x)

is positive, which is a contradiction since ρ′(0)e−φ(0) < ρ′(z)e−φ(z).
Thus, ρ′(r) is non-positive for all r > 0.

Now we have that Ric∞
φ ( ∂

∂θ , ∂
∂θ ) is non-negative if and only if φ′ ≤

ρ′′

ρ for all r > 0. Then, integrating both sides, we get φ(r) ≤ ln |ρ′(r)|.
Then, plugging in the sequence of points {ri} and letting i go to
infinity, we get ∞ = lim

i→∞
φ(ri) ≤ lim

i→∞
ln |ρ′(ri)|.

We must have that lim
i→∞

ρ′(ri) is ±∞. Since ρ′(r) is negative ev-

erywhere, lim
i→∞

ρ′(ri) can’t be ∞, and if lim
i→∞

ρ′(ri) is −∞, then we

also have a contradiction since ρ is continuous and positive every-
where.

How could this result be improved?

If we could prove that a punctured torus with a warped product
splitting must satisfy lim

i→∞
|ρ′(ri)| exists where lim

i→∞
φ((ri, θi)) = ∞,

then we have a nice succinct theorem about the punctured torus
and the Bakry-Émery Ricci curvature. I am hopeful that this punc-
tured torus example will extend to a class of manifolds which satisfy
Ric∞

φ ≥ 0 and don’t admit warped product metrics on their ends.
It seems reasonable that if the manifold doesn’t satisfy the loops to
infinity property and has a hole in it, then the space will not satisfy
Ric∞

φ = Ag with A ≥ 0 or A > 0 with the warped product metric.
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